Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Apr 18 2019 11:49:59
%S 0,1,4,5,12,13,24,25,40,41,60,61,84,85,112,113,144,145,180,181,220,
%T 221,264,265,312,313,364,365,420,421,480,481,544,545,612,613,684,685,
%U 760,761,840,841,924,925,1012,1013,1104,1105,1200,1201,1300,1301,1404
%N Total number of OFF (white) cells after n iterations of the "Rule 59" elementary cellular automaton starting with a single ON (black) cell.
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
%H Robert Price, <a href="/A266725/b266725.txt">Table of n, a(n) for n = 0..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F Conjectures from _Colin Barker_, Jan 05 2016 and Apr 18 2019: (Start)
%F a(n) = (2*n*(n+(-1)^n+1)-(-1)^n+1)/4.
%F a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>4.
%F G.f.: x*(1+3*x-x^2+x^3) / ((1-x)^3*(1+x)^2).
%F (End)
%t rule=59; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]],{k,1,rows}]; (* Number of Black cells in stage n *) nwc=Table[Length[catri[[k]]]-nbc[[k]],{k,1,rows}]; (* Number of White cells in stage n *) Table[Total[Take[nwc,k]],{k,1,rows}] (* Number of White cells through stage n *)
%Y Cf. A266716.
%K nonn
%O 0,3
%A _Robert Price_, Jan 03 2016