login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Multiplicative order of 2^n mod 2*n+1.
1

%I #15 Sep 08 2022 08:46:15

%S 1,2,2,1,3,2,2,4,1,2,3,1,5,18,2,1,5,12,2,12,1,2,6,1,7,8,2,20,9,2,2,6,

%T 3,2,11,1,1,20,15,1,27,2,4,28,1,4,5,36,1,30,2,1,3,2,2,36,1,44,6,24,11,

%U 20,50,1,7,2,3,36,1,2,23,60,7,42,2,1,6,20,2

%N Multiplicative order of 2^n mod 2*n+1.

%H Robert Israel, <a href="/A266697/b266697.txt">Table of n, a(n) for n = 0..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MultiplicativeOrder.html">Multiplicative Order</a>

%F a(n) = A002326(n)/gcd(n,A002326(n)). - _Robert Israel_, Jan 10 2016

%p 1,seq(numtheory:-order(2^n,2*n+1),n=1..100); # _Robert Israel_, Jan 10 2016

%t Table[MultiplicativeOrder[2^n, 2 n + 1], {n, 0, 100}]

%o (Magma) [1] cat [Modorder(2^n, 2*n+1): n in [1..100]];

%o (PARI) a(n) = if(n<0, 0, znorder(Mod(2^n, 2*n+1))); \\ _Altug Alkan_, Jan 04 2016

%o (GAP) List([0..100],n->OrderMod(2^n,2*n+1)); # _Muniru A Asiru_, Feb 25 2019

%Y Cf. A002326, A053447, A053451.

%K nonn,easy

%O 0,2

%A _Vincenzo Librandi_, Jan 03 2016