Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Jun 12 2016 22:20:59
%S 2,11,67,460,3532,30225,286289,2979896,33852226,417123475,5543942107,
%T 79086006756,1205573749892,19561113090785,336643494142657,
%U 6125614986385360,117514626855080914,2370682022353448571,50173196512398036851,1111614380526424428380
%N Numerator of the continued fraction [Sum_{k=0..n} k; 1, 2, 3,..., n].
%H Ilya Gutkovskiy, <a href="/A266579/a266579.pdf">Extended example</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ContinuedFractionConstant.html">Continued Fraction Constant</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TriangularNumber.html">Triangular Number</a>
%F a(n) = A001040(n+1)*A000217(n) + A001053(n+1).
%e 2, 11/3, 67/10, 460/43, 3532/225, 30225/1393, 286289/9976, 2979896/81201, 33852226/740785, 417123475/7489051, 5543942107/83120346, 79086006756/1004933203, 1205573749892/13147251985, 19561113090785/185066460993,...
%e a(10) = 417123475 because 55+1/(1+1/(2+1/(3+1/(4+1/(5+1/(6+1/(7+1/(8+1/(9+1/10))))))))) = 417123475/7489051 and 1+2+3+4+5+6+7+8+9+10 = 55.
%t Table[Numerator[n ((n + 1)/2) + ContinuedFractionK[1, k, {k, n}]], {n, 20}]
%Y Cf. A000217, A001040 (denominator, offset 2), A001053, A052119.
%K nonn,frac
%O 1,1
%A _Ilya Gutkovskiy_, May 07 2016