Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Mar 27 2024 20:11:45
%S 9,9,1,7,1,8,3,2,1,6,3,2,8,2,2,1,9,6,9,9,9,5,4,7,4,8,2,7,6,5,7,9,3,3,
%T 3,9,8,6,7,8,5,9,7,6,0,5,7,3,0,5,0,7,9,2,4,7,0,7,6,5,9,9,3,4,0,9,5,0,
%U 2,3,7,9,3,4,2,1,7,6,1,9,0,9,3,0,9,1,2,3,8,8,8,6,1
%N Decimal expansion of the generalized Glaisher-Kinkelin constant A(8).
%C Also known as the 8th Bendersky constant.
%H G. C. Greubel, <a href="/A266555/b266555.txt">Table of n, a(n) for n = 0..2001</a>
%F A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
%F A(8) = -zeta'(-8) = (B(8)/4)*(zeta(9)/zeta(8)).
%F A(8) = exp(-8! * Zeta(9) / (2^9 * Pi^8)). - _Vaclav Kotesovec_, Jan 01 2016
%e 0.99171832163282219699954748276579333986785976057305079247...
%t Exp[N[(BernoulliB[8]/4)*(Zeta[9]/Zeta[8]), 200]]
%Y Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).
%Y Cf. A013666, A013667, A259073, A027641, A027642.
%K nonn,cons
%O 0,1
%A _G. C. Greubel_, Dec 31 2015