OFFSET
0,2
COMMENTS
The e.g.f. A(x) of this sequence also satisfies:
A(x*y) = Limit_{N->oo} [ Sum_{n>=0} (N + n*y)^(5*n) * (x/N^4)^n/n! ] / G(x,y)^N
where
G(x,y) = Limit_{N->oo} [ Sum_{n>=0} (N + n*y)^(5*n) * (x/N^4)^n/n! ]^(1/N)
for all real y.
EXAMPLE
E.g.f.: A(x) = 1 + 5*x + 160*x^2/2! + 9135*x^3/3! + 750400*x^4/4! + 80441425*x^5/5! + 10638828000*x^6/6! + 1673678753075*x^7/7! + 305252823558400*x^8/8! + 63325918470124125*x^9/9! + 14724939203560768000*x^10/10! +...
such that
A(x) = Limit_{N->oo} [ Sum_{n>=0} (N + n)^(5*n) * (x/N^4)^n/n! ] / F(x)^N
where
F(x) = Limit_{N->oo} [ Sum_{n>=0} (N + n)^(5*n) * (x/N^4)^n/n! ]^(1/N)
and
F(x) = 1 + x + 11*x^2/2! + 316*x^3/3! + 15741*x^4/4! + 1140376*x^5/5! + 109350271*x^6/6! + 13100626176*x^7/7! + 1886686497401*x^8/8! + 317762099341696*x^9/9! + 61318533545522451*x^10/10! +...+ A266484(n)*x^n/n! +...
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 30 2015
STATUS
approved