login
E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n)^(3*n) * (x/N^2)^n/n! ] / F(x)^N, where F(x) = Limit_{N->oo} [ Sum_{n>=0} (N + n)^(3*n) * (x/N^2)^n/n! ]^(1/N).
4

%I #7 Dec 31 2015 00:12:43

%S 1,3,54,1737,80460,4866075,363195144,32252007249,3320837109648,

%T 388974074329395,51071746190248800,7429243977263853657,

%U 1185973466659967427264,206128694834273499148107,38747184998101320725389440,7832602778214436587234950625,1694328566956587966290832896256,390523839870137752804243701312099,95545779571238219801892087161845248,24730355203857044123269648640967753705,6751503716745494652518864431722119040000,1938877409334089151858199776112230794503803

%N E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n)^(3*n) * (x/N^2)^n/n! ] / F(x)^N, where F(x) = Limit_{N->oo} [ Sum_{n>=0} (N + n)^(3*n) * (x/N^2)^n/n! ]^(1/N).

%C The e.g.f. A(x) of this sequence also satisfies:

%C A(x*y) = Limit_{N->oo} [ Sum_{n>=0} (N + n*y)^(3*n) * (x/N^2)^n/n! ] / G(x,y)^N

%C where

%C G(x,y) = Limit_{N->oo} [ Sum_{n>=0} (N + n*y)^(3*n) * (x/N^2)^n/n! ]^(1/N)

%C for all real y.

%e E.g.f.: A(x) = 1 + 3*x + 54*x^2/2! + 1737*x^3/3! + 80460*x^4/4! + 4866075*x^5/5! + 363195144*x^6/6! + 32252007249*x^7/7! + 3320837109648*x^8/8! + 388974074329395*x^9/9! + 51071746190248800*x^10/10! +...

%e such that

%e A(x) = Limit_{N->oo} [ Sum_{n>=0} (N + n)^(3*n) * (x/N^2)^n/n! ] / F(x)^N

%e where

%e F(x) = Limit_{N->oo} [ Sum_{n>=0} (N + n)^(3*n) * (x/N^2)^n/n! ]^(1/N)

%e and

%e F(x) = 1 + x + 7*x^2/2! + 118*x^3/3! + 3373*x^4/4! + 139096*x^5/5! + 7565779*x^6/6! + 513277024*x^7/7! + 41820455065*x^8/8! + 3982842285184*x^9/9! + 434457816912991*x^10/10! +...+ A266482(n)*x^n/n! +...

%Y Cf. A266482, A266522, A266524, A266525.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Dec 30 2015