login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266520
E.g.f.: Log( Sum_{n>=0} (n+1)^(2*n) * x^n/n! ).
2
4, 65, 3252, 319422, 51147492, 12057585792, 3922351554132, 1682965461982320, 921043932965502660, 626381920753520549760, 518386843395242486312436, 513135100084662037473481728, 598802670522558079363471420836, 813678320999818358850938259419136, 1273853548265201707125719549854268820, 2276462439285471707026207820594795624448
OFFSET
1,1
COMMENTS
From two partial functions f,g on [n], form a labeled directed graph with vertex set [n] and edge set: {(x -> f(x)):x in [n]} Union {{(x -> g(x)):x in [n]}. Then a(n) is the number of such graphs that are weakly connected. - Geoffrey Critzer, Dec 06 2021
LINKS
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; page 139.
MATHEMATICA
nn = 10; g[x_] := Sum[(n + 1)^(2 n) x^n/n!, {n, 0, nn}] ;
Drop[Range[0, nn]! CoefficientList[Series[Log[g[x]], {x, 0, nn}], x], 1] (* Geoffrey Critzer, Dec 06 2021 *)
PROG
(PARI) {a(n) = n! * polcoeff( log( sum(m=0, n, (m+1)^(2*m) * x^m/m!) +x*O(x^n)), n)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
Cf. A266519.
Sequence in context: A335176 A307185 A206500 * A241705 A015475 A197947
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 31 2015
STATUS
approved