Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Jun 13 2022 21:13:28
%S 1,3,4,111,16,1983,64,32511,256,523263,1024,8384511,4096,134201343,
%T 16384,2147418111,65536,34359476223,262144,549754765311,1048576,
%U 8796088827903,4194304,140737471578111,16777216,2251799746576383,67108864,36028796750528511,268435456
%N Decimal representation of the n-th iteration of the "Rule 29" elementary cellular automaton starting with a single ON (black) cell.
%H Robert Price, <a href="/A266516/b266516.txt">Table of n, a(n) for n = 0..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H Stephen Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>, Wolfram Media, 2002; p. 55.
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,21,0,-84,0,64).
%F Empirical a(n) = 21*a(n-2) - 84*a(n-4) + 64*a(n-6) for n>5. - _Vincenzo Librandi_, Dec 31 2015 and Apr 16 2019
%F Empirical g.f.: (1+3*x-17*x^2+48*x^3+16*x^4-96*x^5) / ((1-x)*(1+x)*(1-2*x)*(1+2*x)*(1-4*x)*(1+4*x)). - _Colin Barker_, Dec 31 2015 and Apr 16 2019
%F Conjecture: a(n) = 2*(4^n - 2^n) - 1 for odd n; a(n) = 2^n for even n. - _Karl V. Keller, Jr._, Oct 03 2021
%t rule=29; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}] (* Decimal Representation of Rows *)
%Y Cf. A266514, A266515.
%K nonn,easy
%O 0,2
%A _Robert Price_, Dec 30 2015