login
A266480
Maximal product of multiplicities of parts of a partition of n.
4
1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, 50, 56, 64, 72, 84, 96, 108, 120, 135, 150, 165, 180, 200, 220, 240, 264, 288, 312, 336, 364, 405, 450, 495, 540, 600, 660, 720, 792, 864, 936, 1008, 1092, 1176, 1260, 1365, 1470, 1575
OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..16000 (terms 0..5000 from Alois P. Heinz)
EXAMPLE
a(4) = 4 because the products of the multiplicities of the parts in the partitions [4], [1,3], [2,2], [1,1,2], [1,1,1,1] are 1, 1, 2, 2, 4, respectively.
a(21) = 7*4*2 = 56 for partition [1,1,1,1,1,1,1,2,2,2,2,3,3].
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, max(1, n),
max(seq(b(n-i*j, i-1)*max(1, j), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..100);
MATHEMATICA
Table[Max@ Map[Times @@ Map[Last, Tally@ #] &, IntegerPartitions@ n], {n, 0, 56}] (* Michael De Vlieger, Dec 31 2015 *)
b[n_, i_] := b[n, i] = If[n==0 || i==1, Max[1, n], Max[Table[b[n-i*j, i-1]*Max[1, j], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 01 2016, after Alois P. Heinz *)
CROSSREFS
Row lengths of A266477.
Cf. A266871.
Sequence in context: A003045 A279079 A029750 * A246080 A278619 A173925
KEYWORD
nonn
AUTHOR
STATUS
approved