login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266465
Number of n X 3 binary arrays with rows and columns lexicographically nondecreasing and column sums nonincreasing.
1
2, 5, 12, 29, 67, 147, 303, 590, 1090, 1922, 3253, 5311, 8400, 12918, 19377, 28425, 40873, 57722, 80196, 109776, 148240, 197703, 260666, 340063, 439318, 562401, 713894, 899055, 1123895, 1395251, 1720873, 2109508, 2570998, 3116374, 3757967
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 5*a(n-1) - 8*a(n-2) + a(n-3) + 9*a(n-4) - 6*a(n-5) - 6*a(n-7) + 9*a(n-8) + a(n-9) - 8*a(n-10) + 5*a(n-11) - a(n-12).
Empirical g.f.: x*(2 - 5*x + 3*x^2 + 7*x^3 - 5*x^4 - x^5 - 3*x^6 + 7*x^7 - 7*x^9 + 5*x^10 - x^11) / ((1 - x)^8*(1 + x)^2*(1 + x + x^2)). - Colin Barker, Jan 10 2019
EXAMPLE
Some solutions for n=4:
..0..0..0....0..0..0....0..1..1....0..1..1....0..0..1....0..0..1....0..0..1
..0..0..0....0..1..1....1..0..1....1..0..1....0..1..0....1..1..0....0..1..0
..0..0..0....1..0..0....1..1..0....1..1..0....1..0..0....1..1..1....1..0..0
..0..0..0....1..1..1....1..1..0....1..1..1....1..1..0....1..1..1....1..1..1
CROSSREFS
Column 3 of A266470.
Sequence in context: A274594 A062422 A320553 * A079864 A131045 A182555
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 29 2015
STATUS
approved