Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Apr 16 2019 06:26:46
%S 1,0,0,0,1,0,1,0,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,
%T 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,
%U 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1
%N Middle column of the "Rule 25" elementary cellular automaton starting with a single ON (black) cell.
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
%H Robert Price, <a href="/A266444/b266444.txt">Table of n, a(n) for n = 0..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F Conjectures from _Colin Barker_, Dec 31 2015 and Apr 16 2019: (Start)
%F a(n) = (1-(-1)^n)/2 for n>11.
%F a(n) = a(n-2) for n>13.
%F G.f.: (1-x^2+x^4+x^9-x^10-x^11+x^13) / ((1-x)*(1+x)).
%F (End)
%t rule=25; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[catri[[k]][[k]],{k,1,rows}] (* Keep only middle cell from each row *)
%Y Cf. A266441.
%K nonn,easy
%O 0
%A _Robert Price_, Dec 29 2015