login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n X 3 binary arrays with rows and columns lexicographically nondecreasing and row and column sums nondecreasing.
1

%I #9 Jan 09 2019 14:23:52

%S 4,13,35,82,173,337,614,1060,1749,2777,4266,6369,9273,13206,18441,

%T 25302,34170,45490,59776,77620,99698,126778,159728,199525,247262,

%U 304159,371571,450998,544095,652683,778758,924504,1092303,1284747,1504650,1755061

%N Number of n X 3 binary arrays with rows and columns lexicographically nondecreasing and row and column sums nondecreasing.

%H R. H. Hardin, <a href="/A266357/b266357.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n) = 5*a(n-1) -9*a(n-2) +6*a(n-3) -6*a(n-7) +9*a(n-8) -5*a(n-9) +a(n-10).

%F Empirical g.f.: x*(4 - 7*x + 6*x^2 - 6*x^6 + 9*x^7 - 5*x^8 + x^9) / ((1 - x)^7*(1 + x)*(1 + x + x^2)). - _Colin Barker_, Jan 09 2019

%e Some solutions for n=4:

%e ..0..0..1....0..0..0....0..0..1....0..0..1....0..0..1....0..0..0....0..0..0

%e ..0..0..1....0..0..1....0..1..1....0..1..0....0..1..1....0..0..1....0..0..0

%e ..0..1..0....0..1..1....1..1..1....0..1..0....1..0..1....0..0..1....0..1..1

%e ..1..0..1....1..1..0....1..1..1....1..0..1....1..1..1....0..1..1....1..1..1

%Y Column 3 of A266362.

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 28 2015