login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266301
Binary representation of the n-th iteration of the "Rule 15" elementary cellular automaton starting with a single ON (black) cell.
2
1, 110, 1, 1111110, 1, 11111111110, 1, 111111111111110, 1, 1111111111111111110, 1, 11111111111111111111110, 1, 111111111111111111111111110, 1, 1111111111111111111111111111110, 1, 11111111111111111111111111111111110, 1, 111111111111111111111111111111111111110
OFFSET
0,2
FORMULA
From Colin Barker, Dec 28 2015 and Apr 15 2019: (Start)
a(n) = (19*(-1)^n+10^(2*n+1)-(-1)^n*10^(2*n+1)-1)/18.
a(n) = 10001*a(n-2) - 10000*a(n-4) for n>3.
G.f.: (1+110*x-10000*x^2+11000*x^3) / ((1-x)*(1+x)*(1-100*x)*(1+100*x)).
(End)
a(n) = (10*100^n - 10)/9 for odd n; a(n) = 1 for even n. - Karl V. Keller, Jr., Aug 31 2021
E.g.f.: cosh(x) + 10*(sinh(100*x) - sinh(x))/9. - Stefano Spezia, Sep 02 2021
MATHEMATICA
rule=15; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]]], {k, 1, rows}] (* Binary Representation of Rows *)
PROG
(Python) print([(10*100**n - 10)//9 if n%2 else 1 for n in range(50)]) # Karl V. Keller, Jr., Aug 31 2021
CROSSREFS
Sequence in context: A278956 A281629 A278754 * A163597 A266606 A308003
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 26 2015
STATUS
approved