login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of a number close to 24, related to the Ramanujan number e^(Pi*sqrt(163)).
0

%I #27 Mar 13 2016 10:06:24

%S 2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,5,1,2,7,8,7,3,8,6,1,4,1,1,2,0,7,

%T 5,0,6,3,5,1,1,5,7,2,8,9,0,7,2,5,7,7,2,6,4,9,5,5,4,3,5,0,9,9,5,1,2,3,

%U 4,5,2,7,1,7,9,8,6,3,2,0,3,3,8,0,9,1,3,0,5,8,5,8,5,9,3,7,4,9,3,5,6,5,5,2,9

%N Decimal expansion of a number close to 24, related to the Ramanujan number e^(Pi*sqrt(163)).

%H Tito Piezas III <a href="https://sites.google.com/site/tpiezas/Home">The Ramanujan pages</a>, see section 22.

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/AlmostInteger.html">Almost Integer</a>

%F x^24 - e^(Pi*sqrt(163)), where x is the real root of x^3 - 6x^2 + 4x - 2.

%e 24.00000000000000105127873861411207506351157289072577264955435...

%t QP = QPochhammer; r4A[tau_] := With[{q = Exp[2 I Pi tau]}, (1/q) (QP[q^2]^2/(QP[q] QP[q^4]))^24]; RealDigits[r4A[(1/2) Sqrt[-163]] - Exp[Pi Sqrt[163]], 10, 105][[1]]

%t (* or: *)

%t x = Root[#^3 - 6#^2 + 4# - 2&, 1]; RealDigits[x^24 - Exp[Pi Sqrt[ 163]], 10, 105][[1]]

%Y Cf. A060295, A097340, A114609, A114610.

%K nonn,cons

%O 2,1

%A _Jean-François Alcover_, Mar 13 2016