login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266283
Binary representation of the n-th iteration of the "Rule 13" elementary cellular automaton starting with a single ON (black) cell.
3
1, 10, 101, 1101010, 10101, 11110101010, 1010101, 111111010101010, 101010101, 1111111101010101010, 10101010101, 11111111110101010101010, 1010101010101, 111111111111010101010101010, 101010101010101, 1111111111111101010101010101010, 10101010101010101
OFFSET
0,2
FORMULA
From Colin Barker, Dec 27 2015 and Apr 14 2019: (Start)
a(n) = 10101*a(n-2) - 1010100*a(n-4) + 1000000*a(n-6) for n>5.
G.f.: (1+10*x-10000*x^2+1000000*x^3-1100000*x^5) / ((1-x)*(1+x)*(1-10*x)*(1+10*x)*(1-100*x)*(1+100*x)).
(End)
a(n) = (10*100^n - (1000*10^n-1)/11 - 1)/9 for odd n; a(n) = (100*10^n-1)/99 for even n. - Karl V. Keller, Jr., Aug 29 2021
MATHEMATICA
rule=13; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]]], {k, 1, rows}] (* Binary Representation of Rows *)
PROG
(Python) print([(10*100**n - (1000*10**n-1)//11 - 1)//9 if n%2 else (100*10**n-1)//99 for n in range(50)]) # Karl V. Keller, Jr., Aug 29 2021
CROSSREFS
Sequence in context: A036299 A061107 A015498 * A309540 A039393 A199168
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 26 2015
STATUS
approved