login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of zeta'(-16) (the derivative of Riemann's zeta function at -16).
14

%I #17 Jul 16 2021 11:26:42

%S 1,7,7,3,0,2,5,6,6,0,8,9,9,0,9,6,3,9,6,2,4,7,7,8,7,3,4,4,1,8,9,2,9,4,

%T 4,8,1,3,5,5,4,1,9,8,2,7,6,4,6,9,9,9,1,7,7,1,6,3,9,1,7,3,0,7,7,3,7,2,

%U 8,0,9,2,6,9,0,6,6,5,5,3,1,0,4,5,6,0,2,3,7,1,2,7,5,0,5

%N Decimal expansion of zeta'(-16) (the derivative of Riemann's zeta function at -16).

%H G. C. Greubel, <a href="/A266271/b266271.txt">Table of n, a(n) for n = 1..1500</a>

%F zeta'(-16) = (638512875*zeta(17))/(4*Pi^16) = - log(A(16)).

%F Equals (3617/2040)*(zeta(17)/zeta(16)).

%e 1.7730256608990963962477873441892944813554198276469991771639173077.....

%t RealDigits[N[Zeta'[-16], 100]]

%Y Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).

%K nonn,cons

%O 1,2

%A _G. C. Greubel_, Dec 25 2015

%E Offset corrected by _Rick L. Shepherd_, May 21 2016