login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the power tower of 1/sqrt(3): the real solution to 3^(x/2)*x = 1.
0

%I #20 Apr 18 2016 10:56:03

%S 6,8,6,0,2,6,7,2,4,5,3,6,2,5,1,3,1,9,7,1,3,0,0,6,8,4,6,1,8,2,2,3,8,1,

%T 5,9,5,0,3,3,2,4,2,3,7,7,6,2,3,4,3,4,0,2,4,1,7,6,7,1,9,1,6,7,0,0,4,0,

%U 2,9,0,5,8,1,8,7,5,4,8,4,8,7,7,6,4,2,8,1,5,7,8,6,8,9,3,9,8,2,6,3,8,0,6,6,8,6,9,9,3,5,2,8,3,3,2,4,8,9,6,7

%N Decimal expansion of the power tower of 1/sqrt(3): the real solution to 3^(x/2)*x = 1.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PowerTower.html">Power Tower</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LambertW-Function.html"> Lambert W-Function</a>

%F Equals 2*LambertW(log(3)/2)/log(3).

%e (1/sqrt(3))^(1/sqrt(3))^(1/sqrt(3))^(1/sqrt(3))^… = 0.686026724536251319713006846182…

%t RealDigits[(2 ProductLog[Log[3]/2])/Log[3], 10, 120][[1]]

%o (PARI) t=log(3)/2; lambertw(t)/t \\ _Charles R Greathouse IV_, Apr 18 2016

%Y Cf. A020760, A030178, A073084, A073243, A231096.

%K nonn,cons

%O 0,1

%A _Ilya Gutkovskiy_, Dec 21 2015