login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of OFF (white) cells in the n-th iteration of the "Rule 3" elementary cellular automaton starting with a single ON (black) cell.
2

%I #16 Apr 17 2019 08:58:00

%S 0,2,4,2,8,2,12,2,16,2,20,2,24,2,28,2,32,2,36,2,40,2,44,2,48,2,52,2,

%T 56,2,60,2,64,2,68,2,72,2,76,2,80,2,84,2,88,2,92,2,96,2,100,2,104,2,

%U 108,2,112,2,116,2,120,2,124,2,128,2,132,2,136,2,140,2

%N Number of OFF (white) cells in the n-th iteration of the "Rule 3" elementary cellular automaton starting with a single ON (black) cell.

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

%H Robert Price, <a href="/A266073/b266073.txt">Table of n, a(n) for n = 0..999</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%F Empirical g.f.: (-2*(-x - 2*x^2 + x^3))/(-1 + x^2)^2. - _Michael De Vlieger_, Dec 21 2015

%F Conjectures from _Colin Barker_, Dec 21 2015 and Apr 17 2019: (Start)

%F a(n) = (-1)^n*n+n-(-1)^n+1.

%F a(n) = 2*a(n-2) - a(n-4) for n>3.

%F (End)

%e From _Michael De Vlieger_, Dec 21 2015: (Start)

%e First 12 rows, replacing "0" with "." for better visibility of OFF cells, followed by the total number of 0's per row:

%e . = 0

%e . 0 0 = 2

%e 0 0 0 . 0 = 4

%e . . . . 0 0 . = 2

%e 0 0 0 0 0 0 . 0 0 = 8

%e . . . . . . . 0 0 . . = 2

%e 0 0 0 0 0 0 0 0 0 . 0 0 0 = 12

%e . . . . . . . . . . 0 0 . . . = 2

%e 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 = 16

%e . . . . . . . . . . . . . 0 0 . . . . = 2

%e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 = 20

%e . . . . . . . . . . . . . . . . 0 0 . . . . . = 2

%e (End)

%K nonn,easy

%O 0,2

%A _Robert Price_, Dec 20 2015