login
A265993
Number of 3 X n integer arrays with each element equal to the number of horizontal and antidiagonal neighbors not equal to itself.
1
1, 2, 6, 2, 3, 9, 9, 16, 27, 35, 55, 105, 145, 202, 369, 589, 857, 1371, 2229, 3444, 5411, 8585, 13399, 21170, 33573, 52488, 82413, 130606, 205585, 322481, 508515, 801862, 1261277, 1985864, 3128187, 4924251, 7755005, 12214150, 19226531, 30273410
OFFSET
1,2
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 2*a(n-3) + a(n-4) - 3*a(n-5) - a(n-6) - a(n-7) + a(n-8) + 7*a(n-9) - 2*a(n-10) - 4*a(n-11) + 9*a(n-14) + 3*a(n-15) - 8*a(n-16) - 4*a(n-17) for n>20.
Empirical g.f.: x*(1 + x + 4*x^2 - 6*x^3 - 4*x^4 - 5*x^5 - 3*x^6 + 20*x^7 + 3*x^8 - 11*x^9 - 7*x^10 - 17*x^11 + 12*x^12 + 16*x^13 - 17*x^14 - 18*x^15 - 13*x^16 - 3*x^17 + 8*x^18 + 4*x^19) / ((1 - x)*(1 + x^2 - x^3 - x^4 + 3*x^7 + 2*x^8)*(1 - x^2 - x^3 - x^4 - 3*x^7 - 2*x^8)). - Colin Barker, Jan 09 2019
EXAMPLE
Some solutions for n=6:
..1..3..1..1..3..2....1..3..2..2..3..1....1..3..1..1..1..2....1..3..1..1..3..2
..1..1..1..1..1..1....2..3..3..4..1..1....1..1..4..1..1..1....2..1..1..1..1..1
..2..3..1..1..3..1....1..1..1..1..3..1....1..3..1..1..3..1....1..3..1..1..3..1
CROSSREFS
Row 3 of A265991.
Sequence in context: A316259 A057892 A334188 * A115009 A151944 A073094
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 19 2015
STATUS
approved