Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Feb 21 2016 13:51:59
%S 1,5,21,86,349,1410,5682,22860,91869,368906,1480486,5938740,23813746,
%T 95462996,382594884,1533053976,6141910749,24603000666,98541647454,
%U 394644228516,1580344177254,6327940829436,25336229584764,101436400902696,406088663224434,1625644557045060,6507440174581692,26048128051398920
%N Central terms of triangle A102363.
%C Triangle A102363 is constructed by a Pascal-like rule with left edge = 2^n, right edge = 2^(n+1)-1 (n>=0).
%F G.f.: (3 - sqrt(1-4*x)) / (2*(1-4*x)).
%F a(n) = (3*4^n - binomial(2*n, n))/2. - _Vaclav Kotesovec_, Feb 21 2016
%F a(n) = the coefficient of x^(2*n*(n+1)) in Sum_{n>=0} x^n * (1+x)^tr(n) = Sum_{n>=0} A102363(n)*x^n, where tr(n) = A002024(n+1) = floor(sqrt(2*n+1) + 1/2).
%e Triangle A102363 begins:
%e 1;
%e 2, 3;
%e 4, 5, 7;
%e 8, 9, 12, 15;
%e 16, 17, 21, 27, 31;
%e 32, 33, 38, 48, 58, 63;
%e 64, 65, 71, 86, 106, 121, 127;
%e 128, 129, 136, 157, 192, 227, 248, 255;
%e 256, 257, 265, 293, 349, 419, 475, 503, 511, 512; ...
%e where the terms in this sequence form the central terms in the above triangle.
%e RELATED SERIES.
%e Let G(x) be the g.f. of triangle A102363 in flattened form:
%e G(x) = 1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 7*x^5 + 8*x^6 + 9*x^7 + 12*x^8 + 15*x^9 + 16*x^10 + 17*x^11 + 21*x^12 + 27*x^13 + 31*x^14 + 32*x^15 +...
%e where G(x) can be written
%e G(x) = (1+x) + x*(1+x)^2 + x^2*(1+x)^2 + x^3*(1+x)^3 + x^4*(1+x)^3 + x^5*(1+x)^3 + x^6*(1+x)^4 + x^7*(1+x)^4 + x^8*(1+x)^4 + x^9*(1+x)^4 + x^10*(1+x)^5 + x^11*(1+x)^5 + x^12*(1+x)^5 + x^13*(1+x)^5 + x^14*(1+x)^5 + x^15*(1+x)^6 +...
%e then the terms in this sequence form the coefficients of x^(2*n*(n+1)) in G(x) for n>=0.
%e Note that the coefficient of x^(n*(n+1)/2) in G(x) equals 2^n for n>=0.
%t Table[(3*4^n - Binomial[2*n, n])/2, {n, 0, 30}] (* _Vaclav Kotesovec_, Feb 21 2016 *)
%o (PARI) {tr(n) = ceil( (sqrt(8*n+9)-1)/2 )}
%o {a(n) = my(S, N=2*n*(n+1)); S = sum(m=0,N, x^m * (1+x +x*O(x^N))^tr(m) ); polcoeff(S, N)}
%o for(n=0,30, print1(a(n),", "))
%o (PARI) {a(n) = polcoeff( (3 - sqrt(1-4*x +x*O(x^n))) / (2*(1-4*x)) ,n)}
%o for(n=0,30, print1(a(n),", "))
%Y Cf. A102363.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Feb 19 2016