login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of nX4 0..4 arrays with the absolute differences of each element with its with horizontal and antidiagonal neighbors unique.
1

%I #4 Dec 18 2015 22:33:51

%S 340,9016,72772,542940,4044156,30029860,225444912,1691502456,

%T 12779302796,96726712256,733594037948,5585468980116,42451575314372,

%U 324411240385960,2468510420444928,18903703259295268,143946266428000640

%N Number of nX4 0..4 arrays with the absolute differences of each element with its with horizontal and antidiagonal neighbors unique.

%C Column 4 of A265928.

%H R. H. Hardin, <a href="/A265924/b265924.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 16*a(n-1) +74*a(n-2) -2388*a(n-3) +3439*a(n-4) +135306*a(n-5) -522734*a(n-6) -3439014*a(n-7) +19923934*a(n-8) +36082640*a(n-9) -333465409*a(n-10) -59196434*a(n-11) +2436517719*a(n-12) +88992424*a(n-13) -9296733480*a(n-14) -4787400052*a(n-15) +15068783472*a(n-16) +20054756552*a(n-17) +3031868640*a(n-18) -14763124864*a(n-19) -19831398480*a(n-20) -12928318048*a(n-21) -3167850512*a(n-22) +1557170880*a(n-23) +1561396480*a(n-24) +555187200*a(n-25) +96018432*a(n-26) +6553600*a(n-27) -65536*a(n-28) for n>32

%e Some solutions for n=3

%e ..0..0..4..4....4..0..1..3....4..2..1..3....1..3..3..2....0..0..1..3

%e ..1..1..0..3....3..4..4..2....2..1..3..4....2..0..0..1....3..1..4..0

%e ..3..0..1..4....2..1..3..3....4..0..0..1....4..4..3..0....2..4..3..1

%Y Cf. A265928.

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 18 2015