%I #9 Dec 16 2015 11:33:39
%S 1,2,10,36,118,376,1188,3456,10054,28814,79280,215844,581748,1528456,
%T 3987384,10295952,26130982,65874532,164661622,406787220,998529752,
%U 2434022304,5879630196,14124455856,33734350692,80000820426,188787849968,443372664504,1035137265552
%N Expansion of Product_{k>=1} (1 + k^2*x^k)/(1 - k^2*x^k).
%C Convolution of A092484 and A077335.
%H Vaclav Kotesovec, <a href="/A265844/b265844.txt">Table of n, a(n) for n = 0..2000</a>
%F a(n) ~ c * 3^(2*n/3), where
%F c = 33024.782174678163138510272317... if mod(n,3) = 0
%F c = 33024.230416953709449028604542... if mod(n,3) = 1
%F c = 33024.292470246596667257649964... if mod(n,3) = 2.
%t nmax = 40; CoefficientList[Series[Product[(1 + k^2*x^k)/(1 - k^2*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y Cf. A015128, A077335, A092484, A265758.
%K nonn
%O 0,2
%A _Vaclav Kotesovec_, Dec 16 2015