Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Sep 07 2023 15:56:33
%S 1,1,32,275,1267,11925,51445,406183,1406614,14690040,51144366,
%T 251885088,1481359033,5108404955,42614629915,158222158038,
%U 588574803125,2360755022421,13255325882835,39266011999104,325719196861377,1031732678138822,3791401325667894
%N Expansion of Product_{k>=1} (1 + k^5*x^k).
%H Vaclav Kotesovec, <a href="/A265842/b265842.txt">Table of n, a(n) for n = 0..2000</a>
%F G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*j^(5*k)*x^(j*k)/k). - _Ilya Gutkovskiy_, Oct 18 2018
%F Conjecture: log(a(n)) ~ 5*sqrt(n/2) * (log(2*n) - 2). - _Vaclav Kotesovec_, Dec 27 2020
%t nmax = 40; CoefficientList[Series[Product[1 + k^5*x^k, {k, 1, nmax}], {x, 0, nmax}], x]
%Y Cf. A022629, A092484, A265839, A265840, A265841.
%Y Column k=5 of A292189.
%K nonn
%O 0,3
%A _Vaclav Kotesovec_, Dec 16 2015