%I #5 Dec 16 2015 05:55:12
%S 1,1,1,1,1,6,6,6,6,15,40,40,40,53,98,223,223,240,386,611,1236,1257,
%T 1459,2189,3314,6464,6891,8630,12280,17934,34094,37282,45977,64260,
%U 93317,177015,199516,243028,335386,486558,914525,1027071,1246171,1717917,2499859
%N Expansion of Product_{k>=1} 1/(1 - (4*k-3)*x^(4*k-3)).
%H Vaclav Kotesovec, <a href="/A265830/b265830.txt">Table of n, a(n) for n = 0..5000</a>
%F a(n) ~ c * 5^(n/5), where
%F c = 2.507825733169876852324734244164361344346137946210165985160... if mod(n,5) = 0
%F c = 2.044059357237393849525094744007074653835911858380855756712... if mod(n,5) = 1
%F c = 1.804839638762776493150118361894215102701328815651225876275... if mod(n,5) = 2
%F c = 1.804038421648852594778176511112001297019074444232793470829... if mod(n,5) = 3
%F c = 1.892664578176041496503561133229019191251461591133509951564... if mod(n,5) = 4.
%t nmax = 40; CoefficientList[Series[Product[1/(1 - (4*k-3)*x^(4*k-3)), {k, 1, nmax}], {x, 0, nmax}], x]
%Y Cf. A067553, A265820, A265821, A265828, A265829.
%K nonn
%O 0,6
%A _Vaclav Kotesovec_, Dec 16 2015