Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jul 21 2022 01:53:36
%S 7,17,23,31,47,79,193,11251,15149,17291,25261,46643,49171,6105367,
%T 8522909,8823377,42983231,63342553,97109039,97947667,142362299,
%U 292315979,361821233,456318767,677946667,707276879,1161377509,1293881119,2001108827,3221097589,4154291129,7294989463,14281444873
%N Numerators of upper primes-only best approximates (POBAs) to e; see Comments.
%C Suppose that x > 0. A fraction p/q of primes is an upper primes-only best approximate, and we write "p/q is in U(x)", if p'/q < x < p/q < u/v for all primes u and v such that v < q, where p' is greatest prime < p in case p >= 3.
%C Let q(1) = 2 and let p(1) be the least prime >= x. The sequence U(x) follows inductively: for n >= 1, let q(n) is the least prime q such that x < p/q < p(n)/q(n) for some prime p. Let q(n+1) = q and let p(n+1) be the least prime p such that x < p/q < p(n)/q(n).
%C For a guide to POBAs, lower POBAs, and upper POBAs, see A265759.
%e The upper POBAs to e start with 77/2, 17/5, 23/7, 31/11, 47/17, 79/29, 193/71, 11251/4139. For example, if p and q are primes and q > 71, and p/q > e, then 193/71 is closer to e than p/q is.
%t x = E; z = 1000; p[k_] := p[k] = Prime[k];
%t t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
%t d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
%t t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
%t d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
%t v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
%t b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
%t y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265818/A265819 *)
%t Numerator[tL] (* A265814 *)
%t Denominator[tL] (* A265815 *)
%t Numerator[tU] (* A265816 *)
%t Denominator[tU] (* A265817 *)
%t Numerator[y] (* A265818 *)
%t Denominator[y] (* A265819 *)
%Y Cf. A000040, A265759, A265814, A265815, A265817, A265818, A265819.
%K nonn,frac
%O 1,1
%A _Clark Kimberling_, Jan 02 2016
%E More terms from _Bert Dobbelaere_, Jul 21 2022