login
Numerators of upper primes-only best approximates (POBAs) to sqrt(3); see Comments.
7

%I #11 Apr 05 2019 17:35:23

%S 5,7,11,13,23,83,103,127,137,227,809,1093,1571,4273,5333,16141,20627,

%T 41519,56813,111913

%N Numerators of upper primes-only best approximates (POBAs) to sqrt(3); see Comments.

%C Suppose that x > 0. A fraction p/q of primes is an upper primes-only best approximate, and we write "p/q is in U(x)", if p'/q < x < p/q < u/v for all primes u and v such that v < q, where p' is greatest prime < p in case p >= 3.

%C Let q(1) = 2 and let p(1) be the least prime >= x. The sequence U(x) follows inductively: for n >= 1, let q(n) is the least prime q such that x < p/q < p(n)/q(n) for some prime p. Let q(n+1) = q and let p(n+1) be the least prime p such that x < p/q < p(n)/q(n).

%C For a guide to POBAs, lower POBAs, and upper POBAs, see A265759.

%F The upper POBAs to sqrt(3) start with 5/2, 7/3, 11/5, 13/7, 23/13, 83/47, 103/59. For example, if p and q are primes and q > 47, and p/q > sqrt(3), then 83/47 is closer to sqrt(3) than p/q is.

%t x = Sqrt[3]; z = 1000; p[k_] := p[k] = Prime[k];

%t t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];

%t d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)

%t t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];

%t d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)

%t v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];

%t b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];

%t y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265782/A265783 *)

%t Numerator[tL] (* A265778 *)

%t Denominator[tL] (* A265779 *)

%t Numerator[tU] (* A265780 *)

%t Denominator[tU] (* A265781 *)

%t Numerator[y] (* A262582 *)

%t Denominator[y] (* A265783 *)

%Y Cf. A000040, A265759, A265778, A265779, A265781, A265782, A265783.

%K nonn,frac,more

%O 1,1

%A _Clark Kimberling_, Dec 23 2015

%E a(16)-a(20) from _Robert Price_, Apr 05 2019