Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Apr 05 2019 17:45:33
%S 2,13,37,43,139,149,313,347,593,743,883,1009,2617,12269,15731,37879,
%T 43789,90533
%N Denominators of upper primes-only best approximates (POBAs) to sqrt(2); see Comments.
%C Suppose that x > 0. A fraction p/q of primes is an upper primes-only best approximate, and we write "p/q is in U(x)", if p'/q < x < p/q < u/v for all primes u and v such that v < q, where p' is greatest prime < p in case p >= 3.
%C Let q(1) = 2 and let p(1) be the least prime >= x. The sequence U(x) follows inductively: for n >= 1, let q(n) is the least prime q such that x < p/q < p(n)/q(n) for some prime p. Let q(n+1) = q and let p(n+1) be the least prime p such that x < p/q < p(n)/q(n).
%C For a guide to POBAs, lower POBAs, and upper POBAs, see A265759.
%e The upper POBAs to sqrt(2) start with 3/2, 19/13, 53/37, 61/43, 197/139, 211/149. For example, if p and q are primes and q > 139, and p/q > sqrt(2), then 197/139 is closer to sqrt(2) than p/q is.
%t x = Sqrt[2]; z = 200; p[k_] := p[k] = Prime[k];
%t t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
%t d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
%t t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
%t d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
%t v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
%t b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
%t y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265776/A265777 *)
%t Numerator[tL] (* A265772 *)
%t Denominator[tL] (* A265773 *)
%t Numerator[tU] (* A265774 *)
%t Denominator[tU] (* A265775 *)
%t Numerator[y] (* A265776 *)
%t Denominator[y] (* A265777 *)
%Y Cf. A000040, A265759, A265772, A265773, A265774, A265776, A265777.
%K nonn,frac,more
%O 1,1
%A _Clark Kimberling_, Dec 20 2015
%E a(14)-a(18) from _Robert Price_, Apr 05 2019