Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Apr 05 2019 17:45:07
%S 2,7,41,977,1093,1373,1721,2281,3121,3319,3947,4903,4937,8597,38287,
%T 64037,78643
%N Numerators of lower primes-only best approximates (POBAs) to sqrt(2); see Comments.
%C Suppose that x > 0. A fraction p/q of primes is a lower primes-only best approximate, and we write "p/q is in L(x)", if u/v < p/q < x < p'/q for all primes u and v such that v < q, where p' is least prime > p.
%C Let q(1) be the least prime q such that u/q < x for some prime u, and let p(1) be the greatest such u. The sequence L(x) follows inductively: for n > 1, let q(n) is the least prime q such that p(n)/q(n) < p/q < x for some prime p. Let q(n+1) = q and let p(n+1) be the greatest prime p such that p(n)/q(n) < p/q < x.
%C For a guide to POBAs, lower POBAs, and upper POBAs, see A265759.
%e The lower POBAs to sqrt(2) start with 2/2, 7/5, 41/29, 977/691, 1093/773, 1373/971. For example, if p and q are primes and q > 691, and p/q < sqrt(2), then 977/691 is closer to sqrt(2) than p/q is.
%t x = Sqrt[2]; z = 200; p[k_] := p[k] = Prime[k];
%t t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
%t d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
%t t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
%t d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
%t v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
%t b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
%t y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265776/A265777 *)
%t Numerator[tL] (* A265772 *)
%t Denominator[tL] (* A265773 *)
%t Numerator[tU] (* A265774 *)
%t Denominator[tU] (* A265775 *)
%t Numerator[y] (* A265776 *)
%t Denominator[y] (* A265777 *)
%Y Cf. A000040, A265759, A265773, A265774, A265775, A265776, A265777.
%K nonn,frac,more
%O 1,1
%A _Clark Kimberling_, Dec 20 2015
%E a(15)-a(17) from _Robert Price_, Apr 05 2019