OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
LINKS
Robert Price, Table of n, a(n) for n = 0..999
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
FORMULA
Conjectures from Colin Barker, Dec 16 2015 and Apr 16 2019: (Start)
a(n) = 1/2*(n^2+(-1)^n*n+4*n-(-1)^n+1).
a(n) = 1/2*(n^2+5*n) for n even.
a(n) = 1/2*(n^2+3*n+2) for n odd.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
G.f.: x*(3+4*x-3*x^2) / ((1-x)^3*(1+x)^2).
(End)
Apparently, a(n) = A267049(n) + 4*floor(n/2) - 1 for n>1. - Hugo Pfoertner, Jun 21 2024
EXAMPLE
From Michael De Vlieger, Dec 14 2015: (Start)
First 12 rows, replacing ones with "." for better visibility of OFF cells, followed by the total number of 0's per row, and the running total up to that row:
. = 0 -> 0
0 0 0 = 3 -> 3
0 0 . 0 0 = 4 -> 7
. . 0 0 0 . . = 3 -> 10
0 0 0 0 . 0 0 0 0 = 8 -> 18
. . . . 0 0 0 . . . . = 3 -> 21
0 0 0 0 0 0 . 0 0 0 0 0 0 = 12 -> 33
. . . . . . 0 0 0 . . . . . . = 3 -> 36
0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 = 16 -> 52
. . . . . . . . 0 0 0 . . . . . . . . = 3 -> 55
0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 = 20 -> 75
. . . . . . . . . . 0 0 0 . . . . . . . . . . = 3 -> 78
(End)
MATHEMATICA
rows = 53; Accumulate[Count[#, n_ /; n == 0] & /@ Table[Table[Take[CellularAutomaton[1, {{1}, 0}, rows - 1, {All, All}][[k]], {rows - k + 1, rows + k - 1}], {k, rows}][[k]], {k, 1, rows}]] (* Michael De Vlieger, Dec 14 2015 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 14 2015
STATUS
approved