login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n + floor((n+1)/7)*(-1)^((n+1) mod 7).
2

%I #31 Sep 08 2022 08:46:15

%S 0,1,2,3,4,5,7,6,9,8,11,10,13,15,12,17,14,19,16,21,23,18,25,20,27,22,

%T 29,31,24,33,26,35,28,37,39,30,41,32,43,34,45,47,36,49,38,51,40,53,55,

%U 42,57,44,59,46,61,63,48,65,50,67,52,69,71,54,73,56,75

%N a(n) = n + floor((n+1)/7)*(-1)^((n+1) mod 7).

%C A permutation of A001477. This sequence, without the terms of the form 8*k+5, becomes A265228.

%C Similar sequences of the type n + floor((n+1)/k)*(-1)^((n+1) mod k):

%C k = 1: A005408;

%C k = 2: A014682;

%C k = 3: A006369 (permutation of A001477);

%C k = 4: 0, 1, 2, 4, 3, 6, 5, 9, 6, 11, 8, 14, ...;

%C k = 5: 0, 1, 2, 3, 5, 4, 7, 6, 9, 11, 8, 13, ... (permutation of A001477);

%C k = 6: 0, 1, 2, 3, 4, 6, 5, 8, 7, 10, 9, 13, ...;

%C k = 7: this sequence.

%H G. C. Greubel, <a href="/A265672/b265672.txt">Table of n, a(n) for n = 0..5000</a>

%H <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,2,0,0,0,0,0,0,-1).

%F a(n) = a(n-7) + (-1)^((n+1) mod 7) + 7 for n>6.

%F From _Colin Barker_, Dec 13 2015: (Start)

%F a(n) = 2*a(n-7) - a(n-14) for n>13.

%F G.f.: x*(1 +x^2)*(1 +2*x +2*x^2 +2*x^3 +3*x^4 +5*x^5 +3*x^6 +2*x^7 +x^8 +3*x^9 +x^10) / ((1 -x)^2*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6)^2). (End)

%e -------------------------------------------------------------------------

%e 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, ...

%e + + + + + + + + + + + + + + + + + + +

%e 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, 1, -1, 1, 2, -2, 2, -2, 2, -2, ...

%e -------------------------------------------------------------------------

%e 0, 1, 2, 3, 4, 5, 7, 6, 9, 8, 11, 10, 13, 15, 12, 17, 14, 19, 16, ...

%e -------------------------------------------------------------------------

%p A265672:=n->n + floor((n+1)/7)*(-1)^((n+1) mod 7): seq(A265672(n), n=0..100); # _Wesley Ivan Hurt_, Apr 09 2017

%t Table[n + Floor[(n + 1)/7] (-1)^Mod[n + 1, 7], {n, 0, 80}] (* _Bruno Berselli_, Dec 22 2015 *)

%o (PARI) concat(0, Vec(x*(1 +x^2)*(1 +2*x +2*x^2 +2*x^3 +3*x^4 +5*x^5 +3*x^6 +2*x^7 +x^8 +3*x^9 +x^10) / ((1 -x)^2*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6)^2) + O(x^100))) \\ _Colin Barker_, Dec 13 2015

%o (Magma) [n+Floor((n+1)/7)*(-1)^((n+1) mod 7): n in [0..80]]; // _Bruno Berselli_, Dec 26 2015

%Y Cf. A001477, A006369, A265228, A265667, A265734.

%K nonn,easy

%O 0,3

%A _Paul Curtz_, Dec 13 2015

%E Edited by _Bruno Berselli_, Dec 22 2015