Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Jun 11 2024 13:12:45
%S 1,2,2,2,1,3,1,1,2,3,2,2,1,2,3,3,3,2,1,2,2,3,1,3,3,2,2,3,3,3,2,1,2,2,
%T 3,1,3,3,2,2,3,3,3,2,1,2,2,3,1,3,3,2,1,2,2,2,1,3,1,1,2,3,2,2,1,3,1,1,
%U 1,3,2,3,3,1,2,1,1,3,1,2,2,2,1,3,1,1,2,3,2,2,1,1,2,2,2,1,3,1,1,2,3,2,2,1,2,3,3
%N Directions of edges in a plane-filling curve of order 13.
%C Infinite ternary word generated from the axiom 1 by the Lindenmayer system with maps 1 --> 1222131123221, 2 --> 2333212231332, and 3 --> 3111323312113.
%C This is a 13-automatic sequence. It can be generated by reading the lowest nonzero digit D in the base-13 expansion of n>=1: a(n)=1 for D \in {1, 5, 7, 8}, a(n)=2 for D \in {2, 3, 4, 9, 11, 12}, and a(n)=3 for D \in {6, 10}.
%C Corresponds to a grid-filling curve on the triangular grid as a sequence of directed edges where the letters are the directions of the third roots of unity. See the file titled "First iterate of the curve".
%C The corresponding sequence of turns (by 0 or +-120 degree) can be obtained from the L-system with axiom + and maps + --> +00--+0++-0-+, 0 --> +00--+0++-0-0, and - --> +00--+0++-0--.
%C The shape of the curve is one of the A234434(13)=15 possible shapes.
%C An L-system with axiom F and just one non-constant map F --> F+F0F0F-F-F+F0F+F+F-F0F-F generates the curve when 0, +, and - are interpreted as turns and F as a unit stroke in the current direction.
%C Three copies of the curve can be arranged to create a rep-tile that is a lattice tiling, see the files "Tile-plus" (axiom F+F+F), "Tile-minus" (Axiom F-F-F), "Tiling-plus" (self-similarity of the Tile-plus), and "Complex numeration system" (giving the generalized unit square of a numeration system with base 1 + i * sqrt(12) that reproduces the Tile-plus).
%H Joerg Arndt, <a href="/A265671/b265671.txt">Table of n, a(n) for n = 1..2197</a>
%H Joerg Arndt, <a href="/A265671/a265671.pdf">First iterate of the curve</a>, <a href="/A265671/a265671_1.pdf">Second iterate</a>, <a href="/A265671/a265671_2.pdf">Third iterate</a>, <a href="/A265671/a265671_3.pdf">Fourth iterate</a>.
%H Joerg Arndt, <a href="/A265671/a265671.png">Rendering used for the T-shirt on Neil's 75th birthday</a> (png image, 1716 X 2732 pixel).
%H Joerg Arndt, <a href="/A265671/a265671_4.pdf">Tile-plus</a>, <a href="/A265671/a265671_5.pdf">Tile-minus</a>, <a href="/A265671/a265671_6.pdf">Tiling-plus</a>, <a href="/A265671/a265671_1.png">Complex numeration system</a>.
%H Joerg Arndt, <a href="http://arxiv.org/abs/1607.02433">Plane-filling curves on all uniform grids</a>, arXiv:1607.02433 [math.CO], (8-July-2016).
%H Jörg Arndt and Julia Handl, <a href="https://doi.org/10.48550/arXiv.2312.00654">Edge-covering plane-filling curves on grid colorings: a pedestrian approach</a>, arXiv:2312.00654 [math.CO].
%H <a href="/index/Ar#13-automatic">Index entries for 13-automatic sequences</a>.
%t SubstitutionSystem[{1 -> {1,2,2,2,1,3,1,1,2,3,2,2,1}, 2 -> {2,3,3,3,2,1,2,2,3,1,3,3,2}, 3 -> {3,1,1,1,3,2,3,3,1,2,1,1,3}}, {1}, {2}][[1]] (* _Paolo Xausa_, Jun 11 2024 *)
%Y Cf. A029883, A035263, A060236, A080846, A156595, A175337, A176405, A176416.
%Y Cf. A234434 (curves on the triangular grid).
%Y Cf. A229214 (a similar L-system for Gosper's flowsnake).
%K nonn
%O 1,2
%A _Joerg Arndt_, Dec 13 2015