login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Table read by rows: prime factors of squarefree numbers; a(1) = 1 by convention.
12

%I #6 Apr 27 2018 10:38:27

%S 1,2,3,5,2,3,7,2,5,11,13,2,7,3,5,17,19,3,7,2,11,23,2,13,29,2,3,5,31,3,

%T 11,2,17,5,7,37,2,19,3,13,41,2,3,7,43,2,23,47,3,17,53,5,11,3,19,2,29,

%U 59,61,2,31,5,13,2,3,11,67,3,23,2,5,7,71,73,2

%N Table read by rows: prime factors of squarefree numbers; a(1) = 1 by convention.

%C For n > 1: A072047(n) = length of row n;

%C T(n,1) = A073481(n); T(n,A001221(n)) = A073482(n);

%C for n > 1: A111060(n) = sum of row n;

%C A005117(n) = product of row n.

%H Reinhard Zumkeller, <a href="/A265668/b265668.txt">Rows n = 1..1000 of triangle, flattened</a>

%e . n | T(n,*) A5117(n) n | T(n,*) A5117(n) n | T(n,*) A5117(n)

%e . ----+---------+------ ----+---------+------ ----+----------+------

%e . 1 | [1] | 1 21 | [3,11] | 33 41 | [2,3,11] | 66

%e . 2 | [2] | 2 22 | [2,17] | 34 42 | [67] | 67

%e . 3 | [3] | 3 23 | [5,7] | 35 43 | [3,23] | 69

%e . 4 | [5] | 5 24 | [37] | 37 44 | [2,5,7] | 70

%e . 5 | [2,3] | 6 25 | [2,19] | 38 45 | [71] | 71

%e . 6 | [7] | 7 26 | [3,13] | 39 46 | [73] | 73

%e . 7 | [2,5] | 10 27 | [41] | 41 47 | [2,37] | 74

%e . 8 | [11] | 11 28 | [2,3,7] | 42 48 | [7,11] | 77

%e . 9 | [13] | 13 29 | [43] | 43 49 | [2,3,13] | 78

%e . 10 | [2,7] | 14 30 | [2,23] | 46 50 | [79] | 79

%e . 11 | [3,5] | 15 31 | [47] | 47 51 | [2,41] | 82

%e . 12 | [17] | 17 32 | [3,17] | 51 52 | [83] | 83

%e . 13 | [19] | 19 33 | [53] | 53 53 | [5,17] | 85

%e . 14 | [3,7] | 21 34 | [5,11] | 55 54 | [2,43] | 86

%e . 15 | [2,11] | 22 35 | [3,19] | 57 55 | [3,29] | 87

%e . 16 | [23] | 23 36 | [2,29] | 58 56 | [89] | 89

%e . 17 | [2,13] | 26 37 | [59] | 59 57 | [7,13] | 91

%e . 18 | [29] | 29 38 | [61] | 61 58 | [3,31] | 93

%e . 19 | [2,3,5] | 30 39 | [2,31] | 62 59 | [2,47] | 94

%e . 20 | [31] | 31 40 | [5,13] | 65 60 | [5,19] | 95 .

%t FactorInteger[#][[All,1]]&/@Select[Range[100],SquareFreeQ]//Flatten (* _Harvey P. Dale_, Apr 27 2018 *)

%o (Haskell)

%o import Math.NumberTheory.Primes.Factorisation (factorise)

%o import Data.Maybe (mapMaybe)

%o a265668 n k = a265668_tabf !! (n-1) !! (k-1)

%o a265668_row n = a265668_tabf !! (n-1)

%o a265668_tabf = [1] : mapMaybe f [2..] where

%o f x = if all (== 1) es then Just ps else Nothing

%o where (ps, es) = unzip $ factorise x

%Y Cf. A005117, A027748, A124010, A072047 (row lengths), A073481, A073482, A001221, A111060, A049200, A062822.

%K nonn,tabf

%O 1,2

%A _Reinhard Zumkeller_, Dec 13 2015