%I #18 Jun 27 2018 02:47:23
%S 1,0,1,0,1,1,0,-1,1,1,0,1,-1,1,1,0,-1,4,1,5,1,0,5,-163,47,7,5,1,0,
%T -691,191,-109,11,7,7,1,0,7,-1431809,6869,-253,1,119,14,1,0,-3617,
%U 130168,-7728013,2659,-83,11,77,6,1
%N Triangle read by rows, the numerators of the Bell transform of B(2n,1) where B(n,x) are the Bernoulli polynomials.
%C For the definition of the Bell transform see A264428 and the link given there.
%e 1,
%e 0, 1,
%e 0, 1, 1,
%e 0, -1, 1, 1,
%e 0, 1, -1, 1, 1,
%e 0, -1, 4, 1, 5, 1,
%e 0, 5, -163, 47, 7, 5, 1,
%e 0, -691, 191, -109, 11, 7, 7, 1,
%e 0, 7, -1431809, 6869, -253, 1, 119, 14, 1,
%e 0, -3617, 130168, -7728013, 2659, -83, 11, 77, 6, 1.
%p A265602_triangle := proc(n) local B,C,k;
%p B := BellMatrix(x -> bernoulli(2*x,1), n); # see A264428
%p for k from 1 to n do
%p C := LinearAlgebra:-Row(B,k):
%p print(seq(numer(C[j]), j=1..k))
%p od end:
%p A265602_triangle(10);
%t BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
%t rows = 12;
%t B = BellMatrix[BernoulliB[2#, 1]&, rows];
%t Table[B[[n, k]] // Numerator, {n, 1, rows}, {k, 1, n}] // Flatten (*~, from Maple *) ~~~
%Y Cf. A265603 for the denominators, A265314 and A265315 for B(n,1).
%Y Cf. A000367 (column 1).
%K sign,tabl,frac
%O 0,18
%A _Peter Luschny_, Jan 21 2016