Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #13 Oct 15 2017 19:27:54
%S 0,1,11,11,101,101,111,111,1001,1001,1111,1111,1111,1111,1111,1111,
%T 10001,10001,11011,11011,10101,10101,11111,11111,11011,11011,11011,
%U 11011,11111,11111,11111,11111,100001,100001,110011,110011,101101,101101,111111,111111,101101,101101,111111,111111,101101,101101,111111
%N a(n) = smallest base-2 palindrome m >= n such that every base-2 digit of n is <= the corresponding digit of m; m is written in base 2.
%p ispal:= proc(n) global b; # test if n is base-b palindrome
%p local L, Ln, i;
%p L:= convert(n, base, b);
%p Ln:= nops(L);
%p for i from 1 to floor(Ln/2) do
%p if L[i] <> L[Ln+1-i] then return(false); fi;
%p od:
%p return(true);
%p end proc;
%p # find min pal >= n and with n in base-b shadow, write in base 10
%p over10:=proc(n) global b;
%p local t1,t2,i,m,sw1,L1;
%p t1:=convert(n,base,b);
%p L1:=nops(t1);
%p for m from n to 10*n do
%p if ispal(m) then
%p t2:=convert(m,base,b);
%p sw1:=1;
%p for i from 1 to L1 do
%p if t1[i] > t2[i] then sw1:=-1; break; fi;
%p od:
%p if sw1=1 then return(m); fi;
%p fi;
%p od;
%p lprint("no solution in over10 for n = ", n);
%p end proc;
%p # find min pal >= n and with n in base-b shadow, write in base 10
%p overb:=proc(n) global b;
%p local t1,t2,i,m,mb,sw1,L1;
%p t1:=convert(n,base,b);
%p L1:=nops(t1);
%p for m from n to 10*n do
%p if ispal(m) then
%p t2:=convert(m,base,b);
%p sw1:=1;
%p for i from 1 to L1 do
%p if t1[i] > t2[i] then sw1:=-1; break; fi;
%p od:
%p if sw1=1 then mb:=add(t2[i]*10^(i-1), i=1..nops(t2)); return(mb); fi;
%p fi;
%p od;
%p lprint("no solution in over10 for n = ", n);
%p end proc;
%p b:=2;
%p [seq(over10(n),n=0..144)]; # A175298
%p [seq(overb(n),n=0..144)]; # A265543
%t sb2p[n_]:=Module[{m=n},While[!PalindromeQ[IntegerDigits[m,2]]|| Min[ IntegerDigits[ m,2]-IntegerDigits[n,2]]<0,m++];FromDigits[ IntegerDigits[ m,2]]]; Array[sb2p,50,0] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Oct 15 2017 *)
%Y Sequences related to palindromic floor and ceiling: A175298, A206913, A206914, A261423, A262038, and the large block of consecutive sequences beginning at A265509.
%Y See A206913 for the values of m written in base 10.
%K nonn,base
%O 0,3
%A _N. J. A. Sloane_, Dec 09 2015