Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #51 Oct 24 2023 08:52:58
%S 1,0,1,1,1,5,2,14,13,31,66,77,240,286,722,1226,2141,4760,7268,16473,
%T 27716,54615,106217,187818,388084,685830,1370162,2569351,4849538,
%U 9526355,17598392,34694301,65152925,125679731,242019753,459049449,893614680,1695840536
%N Consider the group freely generated by an element U of order 3 and an element S of order 2. a(n) gives the number of words in the alphabet {U,S} of length n that are equal to unity.
%C One of the models of such a group is the full modular group PSL_2(Z).
%H Robert Israel, <a href="/A265434/b265434.txt">Table of n, a(n) for n = 0..2000</a>
%H G. Alkauskas, <a href="http://arxiv.org/abs/1512.02596">The modular group and words in its two generators</a>, arXiv:1512.02596 [math.NT], 2015-2017.
%H G. Alkauskas, <a href="https://doi.org/10.1007/s10986-017-9339-2">The modular group and words in its two generators</a>, Lithuanian Math. J. 57(1) (2017), 1-12.
%H Jason Bell and Marni Mishna, <a href="https://arxiv.org/abs/1805.08118">On the Complexity of the Cogrowth Sequence</a>, arXiv:1805.08118 [math.CO], 2018.
%F G.f.: G(x) satisfies (6*x^5-3*x^4+2*x^3+3*x^2-1)*G(x)^3 + (x^5-x^4+x^3+2*x^2-1)*G(x)^2 + (x^3-x^2+1)*G(x) + 1 = 0.
%F a(n) ~ sqrt(s*(5*r^3*s*(6*s+1) - 4*r^2*s*(3*s+1) + 3*r*(2*s^2+s+1) + 6*s^2+4*s-2) / (r^5*(18*s+1) - r^4*(9*s+1) + r^3*(6*s+1) + r^2*(9*s+2) - 3*s - 1)) / (2*sqrt(Pi)*n^(3/2)*r^(n-1)), where r = 0.5072330945238052458926282360080236... and s = 5.833428896122262867435103255185854... are real roots of the system of equations (r^3-r^2+1)*s + (6*r^5-3*r^4+2*r^3+3*r^2-1)*s^3 + (r^5-r^4+r^3+2*r^2-1)*s^2+1 = 0, r^3 + 3*(6*r^5-3*r^4+2*r^3+3*r^2-1)*s^2 + 2*(r^5-r^4+r^3+2*r^2-1)*s+1 = r^2. - _Vaclav Kotesovec_, Oct 24 2023
%e For n=5 the a(n)=5 words are U^2S^2U, US^2U^2, S^2U^3, SU^3S, U^3S^2.
%p simpl:= proc(W) local A,Ap;
%p Ap:= W;
%p while A <> Ap do
%p A:= Ap;
%p Ap:= StringTools:-RegSubs("UUU"="",StringTools:-RegSubs("SS"="",A));
%p od;
%p A;
%p end proc:
%p F:= proc(n,W) option remember;
%p if n = 0 then
%p if W = "" then return 1 else return 0 fi;
%p fi;
%p procname(n-1,simpl(cat("S",W))) + procname(n-1,simpl(cat("UU",W)))
%p end proc:
%p seq(F(n,""), n=0..40); # _Robert Israel_, Dec 09 2015
%t (* Program not suitable to compute a large number of terms *)
%t a[n_] := Count[Tuples[{U, S}, n] //. {A___, U, U, U, B___} | {A___, S, S, B___} -> {A, B}, {}];
%t Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 20}] (* _Jean-François Alcover_, Jan 18 2018 *)
%Y Cf. A276408 (primitive words), A276409 (reduced words).
%K nonn
%O 0,6
%A _Giedrius Alkauskas_, Dec 09 2015