login
Numbers n for which gcd{k=1..n-1} binomial(2*n, 2*k) = 1.
2

%I #24 Dec 11 2015 19:47:29

%S 20,26,33,35,38,39,44,46,48,50,56,58,60,62,68,72,74,77,78,80,86,88,92,

%T 93,94,95,98,102,104,105,108,110,111,116,118,119,124,130,133,134,138,

%U 140,143,144,146,148,150,152,155,158,160,161,164,165,168,170,171,176,178,182,183,185,186,188,189,194,198,200

%N Numbers n for which gcd{k=1..n-1} binomial(2*n, 2*k) = 1.

%C Contains no primes or prime powers. - _Robert Israel_, Dec 10 2015

%H Antti Karttunen, <a href="/A265401/b265401.txt">Table of n, a(n) for n = 1..6571</a>

%p select(n -> igcd(seq(binomial(2*n, 2*k), k=1..n-1)) = 1, [$1..200]); # _Robert Israel_, Dec 10 2015

%t Select[Range@ 200, GCD @@ Table[Binomial[2 #, 2 k], {k, # - 1}] == 1 &] (* _Michael De Vlieger_, Dec 09 2015, modified to match the new corrected definition by _Antti Karttunen_, Dec 11 2015 *)

%o (PARI) isok(n) = (n>1) && gcd(vector(n-1, k, binomial(2*n, 2*k))) == 1; \\ _Michel Marcus_, Dec 08 2015, edited by _Antti Karttunen_, Dec 11 2015 (see A265388 for why).

%Y Cf. A265388.

%K nonn

%O 1,1

%A _Antti Karttunen_, Dec 08 2015