login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n for which gcd{k=1..n-1} binomial(2*n, 2*k) = 1.
2

%I #24 Dec 11 2015 19:47:29

%S 20,26,33,35,38,39,44,46,48,50,56,58,60,62,68,72,74,77,78,80,86,88,92,

%T 93,94,95,98,102,104,105,108,110,111,116,118,119,124,130,133,134,138,

%U 140,143,144,146,148,150,152,155,158,160,161,164,165,168,170,171,176,178,182,183,185,186,188,189,194,198,200

%N Numbers n for which gcd{k=1..n-1} binomial(2*n, 2*k) = 1.

%C Contains no primes or prime powers. - _Robert Israel_, Dec 10 2015

%H Antti Karttunen, <a href="/A265401/b265401.txt">Table of n, a(n) for n = 1..6571</a>

%p select(n -> igcd(seq(binomial(2*n, 2*k), k=1..n-1)) = 1, [$1..200]); # _Robert Israel_, Dec 10 2015

%t Select[Range@ 200, GCD @@ Table[Binomial[2 #, 2 k], {k, # - 1}] == 1 &] (* _Michael De Vlieger_, Dec 09 2015, modified to match the new corrected definition by _Antti Karttunen_, Dec 11 2015 *)

%o (PARI) isok(n) = (n>1) && gcd(vector(n-1, k, binomial(2*n, 2*k))) == 1; \\ _Michel Marcus_, Dec 08 2015, edited by _Antti Karttunen_, Dec 11 2015 (see A265388 for why).

%Y Cf. A265388.

%K nonn

%O 1,1

%A _Antti Karttunen_, Dec 08 2015