login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265393
a(n) = the smallest number k such that floor(Sum_{d|k} 1/tau(d)) = n.
7
1, 6, 24, 60, 180, 420, 840, 2520, 4620, 9240, 13860, 27720, 60060, 55440, 110880, 166320, 180180, 480480, 360360, 900900, 720720, 1441440, 1801800, 2162160, 3063060, 4084080, 7207200, 12612600, 6126120, 27027000, 12252240, 18378360, 43243200, 24504480
OFFSET
1,2
COMMENTS
Further known terms: a(29) = 6126120, a(31) = 12252240.
Are there numbers n > 1 such that Sum_{d|n} 1/tau(d) is an integer?
Sequences of numbers n such that floor(Sum_{d|n} 1/tau(d)) = k for k = 1..6:
k=1: 1, 2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, ... (A166684);
k=2: 6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 26, 27, 28, 32, 33, 34, 35, ...;
k=3: 24, 30, 36, 40, 42, 48, 54, 56, 66, 70, 72, 78, 80, 88, 96, 100, ...;
k=4: 60, 84, 90, 120, 126, 132, 140, 144, 150, 156, 168, 198, 204, 216, ...;
k=5: 180, 210, 240, 252, 300, 330, 336, 360, 390, 396, 450, 462, 468, ...;
k=6: 420, 630, 660, 720, 780, 900, 924, 990, 1008, 1020, 1050, 1080, ....
Values of function F = Sum_{d|n} 1/tau(d) for some numbers according to their prime signature: F{} = 1; F{1} = 3/2; F{2} = 11/6; F{1, 1} = 9/4; F{3} = 25/12; F{2, 1} = 11/4; F{4} = 137/60; F{3, 1} = 25/8, ...
LINKS
EXAMPLE
For n = 2; a(2) = 6 because 6 is the smallest number with floor(Sum_{d|6} 1/tau(d)) = floor(1/1 + 1/2 + 1/2 + 1/4) = floor(9/4) = 2.
MATHEMATICA
Table[k = 1; While[Floor@ Sum[1/DivisorSigma[0, d], {d, Divisors@ k}] != n, k++]; k, {n, 17}] (* Michael De Vlieger, Dec 09 2015 *)
PROG
(Magma) a:=1; S:=[a]; for n in [2..14] do k:=0; flag:= true; while flag do k+:=1; if Floor(&+[1/NumberOfDivisors(d): d in Divisors(k)]) eq n then Append(~S, k); a:=k; flag:=false; end if; end while; end for; S;
(PARI) a(n) = {k=1; while(k, if(floor(sumdiv(k, d, 1/numdiv(d))) == n, return(k)); k++)} \\ Altug Alkan, Dec 09 2015
CROSSREFS
Cf. A237350 (a(n) = the smallest number k such that Sum_{d|k} 1/tau(d) >= n).
Sequence in context: A130669 A214308 A237350 * A292908 A293017 A371175
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Dec 08 2015
EXTENSIONS
More terms from Michel Marcus, Dec 23 2015
a(33)-a(34) from Hiroaki Yamanouchi, Dec 31 2015
STATUS
approved