login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Binary representation of the n-th iteration of the "Rule 158" elementary cellular automaton starting with a single ON (black) cell.
3

%I #32 Sep 21 2021 06:34:42

%S 1,111,11101,1110011,111011101,11100110011,1110111011101,

%T 111001100110011,11101110111011101,1110011001100110011,

%U 111011101110111011101,11100110011001100110011,1110111011101110111011101,111001100110011001100110011,11101110111011101110111011101

%N Binary representation of the n-th iteration of the "Rule 158" elementary cellular automaton starting with a single ON (black) cell.

%H Robert Price, <a href="/A265379/b265379.txt">Table of n, a(n) for n = 0..499</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Rule158.html">Rule 158</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H Stephen Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>, Wolfram Media, 2002; p. 55.

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,10001,0,-10000).

%F From _Colin Barker_, Dec 14 2015 and Apr 18 2019: (Start)

%F a(n) = 10001*a(n-2) - 10000*a(n-4) for n>3.

%F G.f.: (1+111*x+1100*x^2-100*x^3) / ((1-x)*(1+x)*(1-100*x)*(1+100*x)).

%F (End)

%F a(n) = floor((11100 - (n mod 2))*100^n/9999). - _Karl V. Keller, Jr._, Sep 20 2021

%e From _Michael De Vlieger_, Dec 09 2015: (Start)

%e First 12 rows:

%e 1

%e 1 1 1

%e 1 1 1 0 1

%e 1 1 1 0 0 1 1

%e 1 1 1 0 1 1 1 0 1

%e 1 1 1 0 0 1 1 0 0 1 1

%e 1 1 1 0 1 1 1 0 1 1 1 0 1

%e 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1

%e 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1

%e 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

%e 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1

%e 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

%e 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1

%e (End)

%t rule = 158; rows = 20; Table[FromDigits[Table[Take[CellularAutomaton[rule,{{1},0}, rows-1, {All,All}][[k]], {rows-k+1, rows+k-1}], {k,1,rows}][[k]]], {k,1,rows}]

%o (Python) print([(11100 - (n%2))*100**n//9999 for n in range(30)]) # _Karl V. Keller, Jr._, Sep 20 2021

%Y Cf. A071037 (cells), A118171 (decimal).

%K nonn,easy

%O 0,2

%A _Robert Price_, Dec 07 2015