login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the index of the column in A265901 where n appears; also the index of the row in A265903 where n appears.
15

%I #22 Dec 19 2021 04:17:37

%S 1,2,1,3,1,1,2,4,1,1,1,2,1,2,3,5,1,1,1,1,2,1,1,2,1,2,3,1,2,3,4,6,1,1,

%T 1,1,1,2,1,1,1,2,1,1,2,1,2,3,1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,7,1,1,1,1,

%U 1,1,2,1,1,1,1,2,1,1,1,2,1,1,2,1,2,3,1,1,1,2,1,1,2,1,2,3,1,1,2,1,2,3,1,2,3,4,1,1,2,1,2,3,1,2,3,4,1,2,3,4

%N a(n) is the index of the column in A265901 where n appears; also the index of the row in A265903 where n appears.

%C If all 1's are deleted, the remaining terms are the sequence incremented. - after _Franklin T. Adams-Watters_ Oct 05 2006 comment in A051135.

%C Ordinal transform of A162598.

%H Antti Karttunen, <a href="/A265332/b265332.txt">Table of n, a(n) for n = 1..8192</a>

%H T. Kubo and R. Vakil, <a href="http://dx.doi.org/10.1016/0012-365X(94)00303-Z">On Conway's recursive sequence</a>, Discr. Math. 152 (1996), 225-252.

%F a(1) = 1; for n > 1, a(n) = A051135(n).

%e Illustration how the sequence can be constructed by concatenating the frequency counts Q_n of each successive level n of A004001-tree:

%e --

%e 1 Q_0 = (1)

%e |

%e _2__ Q_1 = (2)

%e / \

%e _3 __4_____ Q_2 = (1,3)

%e / / | \

%e _5 _6 _7 __8___________ Q_3 = (1,1,2,4)

%e / / / | / | \ \

%e _9 10 11 12 13 14 15___ 16_________ Q_4 = (1,1,1,2,1,2,3,5)

%e / / / / | / / | |\ \ | \ \ \ \

%e 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

%e --

%e The above illustration copied from the page 229 of Kubo and Vakil paper (page 5 in PDF).

%t terms = 120;

%t h[1] = 1; h[2] = 1;

%t h[n_] := h[n] = h[h[n - 1]] + h[n - h[n - 1]];

%t seq[nmax_] := seq[nmax] = (Length /@ Split[Sort @ Array[h, nmax, 2]])[[;; terms]];

%t seq[nmax = 2 terms];

%t seq[nmax += terms];

%t While[seq[nmax] != seq[nmax - terms], nmax += terms];

%t seq[nmax] (* _Jean-François Alcover_, Dec 19 2021 *)

%o (Scheme) (define (A265332 n) (if (= 1 n) 1 (A051135 n)))

%Y Essentially same as A051135 apart from the initial term, which here is set as a(1)=1.

%Y Cf. A004001, A265901, A265903.

%Y Cf. A162598 (corresponding other index).

%Y Cf. A265754.

%Y Cf. also A267108, A267109, A267110.

%K nonn

%O 1,2

%A _Antti Karttunen_, Jan 09 2016