login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array read by ascending antidiagonals, Bell numbers iterated by the Bell transform.
4

%I #30 Mar 28 2020 10:58:48

%S 1,1,1,1,1,1,1,1,2,1,1,1,2,5,1,1,1,2,6,15,1,1,1,2,6,23,52,1,1,1,2,6,

%T 24,106,203,1,1,1,2,6,24,119,568,877,1,1,1,2,6,24,120,700,3459,4140,1,

%U 1,1,2,6,24,120,719,4748,23544,21147,1,1,1,2,6,24,120,720,5013,36403,176850,115975,1

%N Square array read by ascending antidiagonals, Bell numbers iterated by the Bell transform.

%H Alois P. Heinz, <a href="/A265312/b265312.txt">Antidiagonals n = 0..140, flattened</a>

%H Peter Luschny, <a href="https://oeis.org/wiki/User:Peter_Luschny/BellTransform">The Bell transform</a>

%e [1, 1, 1, 1, 1, 1, 1, 1, 1, ...] A000012

%e [1, 1, 2, 5, 15, 52, 203, 877, 4140, ...] A000110

%e [1, 1, 2, 6, 23, 106, 568, 3459, 23544, ...] A187761

%e [1, 1, 2, 6, 24, 119, 700, 4748, 36403, ...] A264432

%e [1, 1, 2, 6, 24, 120, 719, 5013, 39812, ...]

%e [1, 1, 2, 6, 24, 120, 720, 5039, 40285, ...]

%e [... ...]

%e [1, 1, 2, 6, 24, 120, 720, 5040, 40320, ...] A000142 = main diagonal.

%p A:= proc(n, h) option remember; `if`(min(n, h)=0, 1, add(

%p binomial(n-1, j-1)*A(j-1, h-1)*A(n-j, h), j=1..n))

%p end:

%p seq(seq(A(n, d-n), n=0..d), d=0..12); # _Alois P. Heinz_, Aug 21 2017

%t A[n_, h_]:=A[n, h]=If[Min[n, h]==0, 1, Sum[Binomial[n - 1, j - 1] A[j - 1, h - 1] A[n - j, h] , {j, n}]]; Table[A[n, d - n], {d, 0, 12}, {n, 0, d}]//Flatten (* _Indranil Ghosh_, Aug 21 2017, after maple code *)

%o (Sage) # uses[bell_transform from A264428]

%o def bell_number_matrix(ord, len):

%o b = [1]*len; L = [b]

%o for k in (1..ord-1):

%o b = [sum(bell_transform(n, b)) for n in range(len)]

%o L.append(b)

%o return matrix(ZZ, L)

%o print(bell_number_matrix(6, 9))

%o (Python)

%o from sympy.core.cache import cacheit

%o from sympy import binomial

%o @cacheit

%o def A(n, h): return 1 if min(n, h)==0 else sum([binomial(n - 1, j - 1)*A(j - 1, h - 1)*A(n - j, h) for j in range(1, n + 1)])

%o for d in range(13): print([A(n, d - n) for n in range(d + 1)]) # _Indranil Ghosh_, Aug 21 2017, after Maple code

%Y Cf. A000012, A000110, A000142, A187761, A264428, A264432, A265313.

%K nonn,tabl

%O 0,9

%A _Peter Luschny_, Dec 06 2015