OFFSET
0,1
COMMENTS
This constant is transcendental.
The rational approximation z ~ 33616604796619977479086259520427152017/85070591730234615865843651857942052860 is accurate to many thousands of digits.
This constant is one of 6 solutions to the equation 1/2 = Sum_{n>=1} {n*z}/2^n, where z is in the interval (0,1) - see cross-references for other solutions.
The complement to this constant is given by A265275.
LINKS
Eric Weisstein's World of Mathematics, Devil's Staircase.
FORMULA
The constant z satisfies:
(1) 2*z - 1/2 = Sum_{n>=1} [n*z] / 2^n,
(2) 2*z - 1/2 = Sum_{n>=1} 1 / 2^[n/z],
(3) 3/2 - 2*z = Sum_{n>=1} 1 / 2^[n/(1-z)],
(4) 3/2 - 2*z = Sum_{n>=1} [n*(1-z)] / 2^n,
(5) 1/2 = Sum_{n>=1} {n*(1-z)} / 2^n,
where [x] denotes the integer floor function of x.
EXAMPLE
z = 0.395161290322521968083756578604161831705347254761983143514147492410987...
where z satisfies
(0) 1/2 = {z}/2 + {2*z}/2^2 + {3*z}/2^3 + {4*z}/2^4 + {5*z}/2^5 +...
(1) 2*z - 1/2 = [z]/2 + [2*z]/2^2 + [3*z]/2^3 + [4*z]/2^4 + [5*z]/2^5 +...
(2) 2*z - 1/2 = 1/2^[1/z] + 1/2^[2/z] + 1/2^[3/z] + 1/2^[4/z] + 1/2^[5/z] +...
The continued fraction of the constant z begins:
[0; 2, 1, 1, 7, 1, 1, 1, 1108378656, 2, 1, 1, 1, 3, 2, 1, 1, 1, 34359738367, 2, 1, 1, 1, 1099511627775, 2, 1, 2, ...]
(the next partial quotient has too many digits to show).
The convergents of the continued fraction of z begin:
[0/1, 1/2, 1/3, 2/5, 15/38, 17/43, 32/81, 49/124, 54310554176/137438953425, 108621108401/274877906974, 162931662577/412316860399, ...].
The partial quotients of the continued fraction of 2*z - 1/2 are as follows:
[0; 3, 2, 4, 8867029256, 32, 274877906944, 8796093022208, ..., Q_n, ...]
where
Q_1 = 2^0*(2^(2*1) - 1)/(2^1 - 1) = 3 ;
Q_2 = 2^1*(2^(1*2) - 1)/(2^2 - 1) = 2 ;
Q_3 = 2^2*(2^(1*3) - 1)/(2^3 - 1) = 4 ;
Q_4 = 2^3*(2^(7*5) - 1)/(2^5 - 1) = 8867029256 ;
Q_5 = 2^5*(2^(1*38) - 1)/(2^38 - 1) = 32 ;
Q_6 = 2^38*(2^(1*43) - 1)/(2^43 - 1) = 274877906944 ;
Q_7 = 2^43*(2^(1*81) - 1)/(2^81 - 1) = 8796093022208 ;
Q_8 = 2^81*(2^(1108378656*124) - 1)/(2^124 - 1) ;
Q_9 = 2^124*(2^(2*137438953425) - 1)/(2^137438953425 - 1) ;
Q_10 = 2^137438953425*(2^(1*274877906974) - 1)/(2^274877906974 - 1) ;...
These partial quotients can be calculated from the simple continued fraction of z and the denominators in the convergents of the continued fraction of z; see the Mathworld link entitled "Devil's Staircase" for more details.
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Paul D. Hanna, Dec 09 2015
STATUS
approved