login
Decimal expansion of positive x satisfying x^(x^x) = LambertW(1).
0

%I #16 Jul 19 2020 11:42:35

%S 4,4,3,3,4,4,8,8,7,3,5,7,9,1,5,0,7,4,1,5,9,8,0,0,2,7,9,3,7,8,8,6,8,8,

%T 6,0,1,2,2,5,4,1,3,9,6,5,2,2,2,2,9,2,1,4,9,5,7,7,1,3,5,9,5,4,0,8,8,4,

%U 9,4,5,4,8,8,1,8,6,0,0,2,4,6,5,9,7,8,8,6,7,6,8,7,9,2,2,8,4,9,2,5,1,9,9,4,1,5,3,0,0,1,1,9,8,1

%N Decimal expansion of positive x satisfying x^(x^x) = LambertW(1).

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lambert_W_function">Lambert W function</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Omega_constant">Omega constant</a>

%e 0.44334488735791507415980027937886886012254139652223...

%t RealDigits[x/.FindRoot[x^(x^x)==ProductLog[1],{x,1},WorkingPrecision-> 120]][[1]] (* _Harvey P. Dale_, Jul 19 2020 *)

%o (PARI) default(realprecision,2000);solve(x=0.001,3,x^(x^x)-lambertw(1))

%Y Cf. A030178, A264807, A264808.

%K nonn,cons

%O 0,1

%A _Anders Hellström_, Dec 02 2015