login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that (2^(n+3) * 5^(n+4) - 1463)/9 is prime (n > 0).
1

%I #24 Sep 08 2022 08:46:14

%S 1,5,155,353,1144,4297,11921,14027

%N Numbers n such that (2^(n+3) * 5^(n+4) - 1463)/9 is prime (n > 0).

%C Numbers n such that '393' appended to n times the digit 5 is prime.

%C Up to a(7) nonprimes alternate with primes; a(9) > 30000 (if it exists).

%e 1 appears because 5393 is prime.

%e 5 appears because 55555393 ('5' concatenated 5 times and prepended to '393') is prime.

%p A265123:=n->`if`(isprime((2^(n+3) * 5^(n+4) - 1463)/9), n, NULL): seq(A265123(n), n=1..1500);

%t Select[Range[1500], PrimeQ[(2^(# + 3) * 5^(# + 4) - 1463) / 9] &]

%o (Magma) [n: n in [1..400] | IsPrime((2^(n+3) * 5^(n+4) - 1463) div 9)];

%o (PARI) is(n)=isprime((2^(n+3)*5^(n+4) - 1463)/9)

%Y Cf. A260903.

%K nonn,base,hard,more

%O 1,2

%A _Mikk Heidemaa_, Dec 02 2015