login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (2*x^4+x^3+x)/(-x^2-2*x+1).
5

%I #21 Nov 02 2021 04:33:55

%S 0,1,2,6,16,38,92,222,536,1294,3124,7542,18208,43958,106124,256206,

%T 618536,1493278,3605092,8703462,21012016,50727494,122467004,295661502,

%U 713790008,1723241518,4160273044,10043787606,24247848256,58539484118,141326816492,341193117102

%N Expansion of (2*x^4+x^3+x)/(-x^2-2*x+1).

%H Colin Barker, <a href="/A265107/b265107.txt">Table of n, a(n) for n = 0..1000</a>

%H M. Diepenbroek, M. Maus and A. Stoll, <a href="http://www.valpo.edu/mathematics-statistics/files/2014/09/Pudwell2015.pdf">Pattern Avoidance in Reverse Double Lists</a>, Preprint 2015. See Table 3.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,1).

%F From _Colin Barker_, Apr 12 2016: (Start)

%F a(n) = ((1+sqrt(2))^n*(-5+4*sqrt(2)) + (1-sqrt(2))^n*(5+4*sqrt(2)))/sqrt(2) for n>2.

%F a(n) = 2*a(n-1)+a(n-2) for n>4.

%F (End)

%t Join[{0, 1, 2}, LinearRecurrence[{2, 1}, {6, 16}, 30]] (* _Jean-François Alcover_, Nov 02 2021 *)

%o (PARI) concat(0, Vec(x*(1+x)*(1-x+2*x^2)/(1-2*x-x^2) + O(x^50))) \\ _Colin Barker_, Apr 12 2016

%Y Cf. A002605, A265106, A265278, A270810.

%K nonn,easy

%O 0,3

%A _Alois P. Heinz_, Apr 06 2016