The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265080 Array read by antidiagonals, arising from study of remixing keys in public-key cryptography. 6
 0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 6, 3, 0, 0, 4, 12, 18, 4, 0, 0, 5, 20, 51, 44, 5, 0, 0, 6, 30, 108, 192, 110, 6, 0, 0, 7, 42, 195, 544, 675, 252, 7, 0, 0, 8, 56, 318, 1220, 2540, 2358, 588, 8, 0, 0, 9, 72, 483, 2364, 7145, 11544, 8043, 1304, 9, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS See Brown (2015) for precise definition. If you randomly throw n balls into k boxes then T(n,k)/k^n is the expected number of balls in the fullest box. - Henry Bottomley, Mar 20 2021 LINKS Andrew Howroyd, Table of n, a(n) for n = 0..1325 Daniel R. L. Brown, Bounds on surmising remixed keys, IACR, Report 2015/375, 2015-2016. See Table 1. EXAMPLE Array begins: 0, 0, 0, 0, 0, 0, ... 0, 1, 2, 3, 4, 5, ... 0, 2, 6, 12, 20, 30, ... 0, 3, 18, 51, 108, 195, ... 0, 4, 44, 192, 544, 1220, ... 0, 5, 110, 675, 2540, 7145, ... ... PROG (PARI) Q(p)={my(S=Set(p)); prod(i=1, #S, (#select(t->t==S[i], p))!)} T(n, k)={my(s=0); forpart(p=n, s+=p[#p]*n!*(#p)!*binomial(k, #p)/(prod(i=1, #p, p[i]!) * Q(Vec(p)))); s} \\ Andrew Howroyd, Mar 20 2021 CROSSREFS Rows n=1..5 are A001477, A002378, A064043, A265081, A265082. Columns k=1..5 are A001477, A230137, A265083, A265084, A265085. Main diagonal is A208250. Sequence in context: A343046 A271917 A185651 * A228275 A228250 A341317 Adjacent sequences: A265077 A265078 A265079 * A265081 A265082 A265083 KEYWORD nonn,tabl AUTHOR N. J. A. Sloane, Jan 01 2016 EXTENSIONS More terms from Henry Bottomley, Mar 20 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 23:29 EDT 2024. Contains 375024 sequences. (Running on oeis4.)