login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Even bisection of A263272; terms of A264974 doubled.
4

%I #8 May 23 2017 20:58:50

%S 0,2,4,6,8,10,12,14,32,18,20,38,24,26,28,30,16,34,36,22,40,42,68,86,

%T 96,50,104,54,56,110,60,74,92,114,44,98,72,62,116,78,80,82,84,46,100,

%U 90,64,118,48,70,88,102,52,106,108,58,112,66,76,94,120,122,284,126,176,338,204,230,248,258,140,302,288

%N Even bisection of A263272; terms of A264974 doubled.

%F a(n) = A263272(2*n).

%F a(n) = 2 * A264974(n).

%F a(n) = A263273(4*n)/2.

%o (Scheme) (define (A264986 n) (A263272 (+ n n)))

%o (Python)

%o from sympy import factorint

%o from sympy.ntheory.factor_ import digits

%o from operator import mul

%o def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)

%o def a038502(n):

%o f=factorint(n)

%o return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])

%o def a038500(n): return n/a038502(n)

%o def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)

%o def a(n): return a263273(4*n)/2 # _Indranil Ghosh_, May 23 2017

%Y Cf. A263272, A264974, A264987.

%K nonn

%O 0,2

%A _Antti Karttunen_, Dec 05 2015