login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Self-inverse permutation of nonnegative integers: a(n) = (A264983(n)-1) / 2.
15

%I #17 May 22 2017 20:07:49

%S 0,1,3,2,4,9,6,10,12,5,7,11,8,13,27,18,28,36,15,19,33,24,31,30,21,37,

%T 39,14,16,32,23,22,29,20,34,38,17,25,35,26,40,81,54,82,108,45,55,99,

%U 72,85,90,63,109,117,42,46,96,69,58,87,60,100,114,51,73,105,78,94,84,57,91,111,48,64,102,75,112,93,66,118,120,41

%N Self-inverse permutation of nonnegative integers: a(n) = (A264983(n)-1) / 2.

%H Antti Karttunen, <a href="/A264985/b264985.txt">Table of n, a(n) for n = 0..9841</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F a(n) = (A264983(n)-1) / 2 = (1/2) * (A263273(2n + 1) - 1).

%t f[n_] := Block[{g, h}, g[x_] := x/3^IntegerExponent[x, 3]; h[x_] := x/g@ x; If[n == 0, 0, FromDigits[Reverse@ IntegerDigits[#, 3], 3] &@ g[n] h[n]]]; t = Select[f /@ Range@ 1000, OddQ]; Table[(t[[n + 1]] - 1)/2, {n, 0, 81}] (* _Michael De Vlieger_, Jan 04 2016, after _Jean-François Alcover_ at A263273 *)

%o (Scheme) (define (A264985 n) (/ (- (A264983 n) 1) 2))

%o (Python)

%o from sympy import factorint

%o from sympy.ntheory.factor_ import digits

%o from operator import mul

%o def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)

%o def a038502(n):

%o f=factorint(n)

%o return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])

%o def a038500(n): return n/a038502(n)

%o def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)

%o def a(n): return (a263273(2*n + 1) - 1)/2 # _Indranil Ghosh_, May 22 2017

%Y Cf. A263273, A264983.

%Y Cf. also A264989, A264991, A264992.

%K nonn

%O 0,3

%A _Antti Karttunen_, Dec 05 2015