OFFSET
1,1
COMMENTS
As k increases, it appears that the average of the digits of the k-th Fibonacci number approaches 9/2 (the same as would be expected with increasingly longer strings of random decimal digits).
a(60) = 1063 is almost certainly the last term in the sequence.
It seems nearly certain that there are only 11 Fibonacci numbers whose average digit is exactly 5; their indices are k = 5, 10, 35, 78, 97, 138, 184, 189, 300, 437, and 550.
EXAMPLE
The first several terms and their corresponding Fibonacci numbers, number of digits D, digit sum S, and average digit values are as follows:
.
k | Fibonacci(k) | D | S | avg. digit value
---+--------------+----+----+-----------------
6 | 8 | 1 | 8 | 8.00000000000000
11 | 89 | 2 | 17 | 8.50000000000000
14 | 377 | 3 | 17 | 5.66666666666667
16 | 987 | 3 | 24 | 8.00000000000000
17 | 1597 | 4 | 22 | 5.50000000000000
20 | 6765 | 4 | 24 | 6.00000000000000
23 | 28657 | 5 | 28 | 5.60000000000000
24 | 46368 | 5 | 27 | 5.40000000000000
34 | 5702887 | 7 | 37 | 5.28571428571429
38 | 39088169 | 8 | 44 | 5.50000000000000
39 | 63245986 | 8 | 43 | 5.37500000000000
42 | 267914296 | 9 | 46 | 5.11111111111111
48 | 4807526976 | 10 | 54 | 5.40000000000000
49 | 7778742049 | 10 | 55 | 5.50000000000000
58 | 591286729879 | 12 | 73 | 6.08333333333333
.
(Fibonacci(58) is almost certainly the last Fibonacci number whose average digit exceeds 98/17 = 5.764705...)
MATHEMATICA
Select[Range@ 1200, Mean@ IntegerDigits@ Fibonacci@ # > 5 &] (* Michael De Vlieger, Nov 28 2015 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jon E. Schoenfield, Nov 28 2015
STATUS
approved