login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A264911 Number of 6-ascent sequences of length n with no consecutive repeated letters. 2
1, 1, 6, 42, 315, 2541, 21931, 201761, 1971627, 20401115, 222886237, 2564378397, 30996823039, 392772620555, 5206946927601, 72084153595073, 1040323636265431, 15627180533214417, 243970019981427565, 3953119943277152705, 66394925299770846495, 1154518082416143179150 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..200

S. Kitaev, J. Remmel, p-Ascent Sequences, arXiv:1503.00914 [math.CO], 2015.

MAPLE

b:= proc(n, i, t) option remember; `if`(n<1, 1, add(

      `if`(j=i, 0, b(n-1, j, t+`if`(j>i, 1, 0))), j=0..t+6))

    end:

a:= n-> (b(n-1, 0$2)):

seq(a(n), n=0..30);

MATHEMATICA

b[n_, i_, t_] := b[n, i, t] = If[n < 1, 1, Sum[If[j == i, 0, b[n - 1, j, t + If[j > i, 1, 0]]], {j, 0, t + 6}]]; a[n_] := b[n - 1, 0, 0];

Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 09 2017, after Alois P. Heinz *)

CROSSREFS

Column k=6 of A264909.

Sequence in context: A162968 A247638 A034171 * A244902 A153293 A145301

Adjacent sequences:  A264908 A264909 A264910 * A264912 A264913 A264914

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Nov 28 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 13:03 EST 2021. Contains 349526 sequences. (Running on oeis4.)