Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Mar 17 2018 05:59:07
%S 1,30,648,6701456,72020220595275,970458695858595792221157266,
%T 3377345920936319088412440649783459968197698452784332095,
%U 7477788200541027929765479736500643733301085903714718188060185368351929896324223859775571543015918781111399506
%N a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is 23-gonal: (21n^2 - 19n)/2.
%H Chai Wah Wu, <a href="/A264849/b264849.txt">Table of n, a(n) for n = 1..11</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Polygonal_number">Polygonal number</a>
%e 1, 130, 130648 are 23-gonal.
%o (PARI) icositrigonal(n)=ispolygonal(n, 23)
%o first(m)=my(s=""); s="1"; print1(1, ", "); for(i=2, m, n=1; while(!icositrigonal(eval(concat(s, Str(n)))), n++); print1(n, ", "); s=concat(s, Str(n)))
%Y Cf. A051671, A051875 (23-gonal numbers), A061109, A061110, A261696, A264733, A264738, A264776, A264777, A264842, A264848, A264804.
%K nonn,base
%O 1,2
%A _Anders Hellström_, Nov 26 2015
%E a(5)-a(8) from _Chai Wah Wu_, Mar 15 2018